The Complexity of Deciding Statistical Properties of Samplable Distributions

نویسنده

  • Thomas Watson
چکیده

We consider the problems of deciding whether the joint distribution sampled by a given circuit satisfies certain statistical properties such as being i.i.d., being exchangeable, being pairwise independent, having two coordinates with identical marginals, having two uncorrelated coordinates, and many other variants. We give a proof that simultaneously shows all these problems are C = P-complete, by showing that the following promise problem (which is a restriction of all the above problems) is C = P-complete: Given a circuit, distinguish the case where the output distribution is uniform and the case where every pair of coordinates is neither uncorrelated nor identically distributed. This completeness result holds even for samplers that are depth-3 circuits. We also consider circuits that are d-local, in the sense that each output bit depends on at most d input bits. We give linear-time algorithms for deciding whether a 2-local sampler’s joint distribution is fully independent, and whether it is exchangeable. We also show that for general circuits, certain approximation versions of the problems of deciding full independence and exchangeability are SZK-complete. We also introduce a bounded-error version of C = P, which we call BC = P, and we investigate its structural properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complete Promise Problem for Statistical Zero-Knowledge

We present a complete promise problem for SZK, the class of languages possessing statistical zero-knowledge proofs (against an honest verifier). The problem is to decide whether two efficiently samplable distributions are either statisticallyclose or far apart. This characterizes SZK with no reference to interaction or zero-knowledge. From this theorem and its proof, we are able to establish se...

متن کامل

Polynomial Time Samplable Distributions

This paper studies distributions which can be \approximated" by sampling algorithms in time polynomial in the length of their outputs. First, it is known that if polynomial-time samplable distributions are polynomial-time computable, then NP collapses to P. This paper shows by a simple counting argument that every polynomial-time samplable distribution is computable in polynomial time if and on...

متن کامل

Time-Bounded Universal Distributions

We show that under a reasonable hardness assumptions, the time-bounded Kolmogorov distribution is a universal samplable distribution. Under the same assumption we exactly characterize the worst-case running time of languages that are in average polynomial-time over all P-samplable distributions.

متن کامل

No Better Ways to Generate Hard NP Instances than Picking Uniformly at Random

Distributed NP (DNP) problems are ones supplied with probability distributions of instances. We can consider their hardness for typical instances rather than just for the worst case (which may be extremely rare). Reductions between such problems must approximately preserve the distributions. A number of papers show completeness of several natural DNP problems in the class of aJl DNP problems wi...

متن کامل

Reduction for NP-search Problems from Samplable to Uniform Distributions: Hard Distribution Case

Impagliazzo and Levin showed a reduction from average-case hardness of any NP-search problem under any polynomialtime samplable distribution to that of another NP-search problem under the uniform distribution in [12]. Their target was the hardness of positive instances occurring with probability 1/poly(n) under the distributions. In this paper, we focus on hardness of a larger fraction of insta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013